

Smart contract
security audit

Table of Contents

1.0 Introduction 3

1.1 Project engagement 3

1.2 Disclaimer 3

2.0 Coverage 4

2.1 Target Code and Revision 4

2.2 Attacks made to the contract 5

3.0 Security Issues 7

3.1 High severity issues 7

3.2 Medium severity issues [Acknowledge] 7

3.3 Low severity issues [Acknowledge] 7

3.4 Informational Findings [Acknowledge] 8

4.0 Testing coverage - python 9

5.0 Annexes 21

6.0 Summary of the audit 37

Copyright © CTDSec - All rights reserved 2 | Page

1.0 Introduction

1.1 Project engagement

During March of 2023, Dextools team engaged CTDSec to audit smart contracts that they created. The

engagement was technical in nature and focused on identifying security flaws in the design and

implementation of the contracts. Dextools provided CTDSec with access to their code repository and all

the technical and business information necessary to be able to analyze the complete flow of contracts

and back/front end..

The project to be audited consists of a token creator to simplify and secure the creation of tokens. It is

made up of a factory which generates a standardized and secured contract following correct security

guidelines and forking contracts that have been tested in the past and worked correctly.

Dextools includes a small fee for the creation of the token which is outside the supply (the supply is

transferred 100% to the creator) only the creation fee is paid with stablecoins or the token that

Dextools chooses.

1.2 Disclaimer

It should be noted that this audit is not an endorsement of the reliability or effectiveness of

the contract, rather limited to an assessment of the logic and implementation. In order to

ensure a secure contract that’s able to withstand the network’s fast-paced and

rapidly changing environment, we at CTDSec recommend that Dextools team put in place a

bug bounty program to encourage further and active analysis of the smart contract.

Being an evolutionary and changing environment, we also recommend monitoring the behavior of all

contracts in all evm networks and evaluating future changes that may occur in opcodes of the different

networks and whether they may imply any impact.

Copyright © CTDSec - All rights reserved 3 | Page

2.0 Coverage

2.1 Target Code and Revision

For this audit, we performed research, investigation, and review of the Dextools contracts followed by

issue reporting, along with mitigation and remediation instructions outlined in this report. The

following code files are considered in-scope for the review:

Source file [all files included in the next repo]:

https://github.com/dextools-io/token-creator-contracts

Commit: ecc0bb327bf6ff3f0c7d17730a76234bafac05e1

Copyright © CTDSec - All rights reserved 4 | Page

https://github.com/dextools-io/token-creator-contracts

2.2 Attacks made to the contract

In order to check for the security of the contract, we tested several attacks in order to make sure

that the contract is secure and follows best practices.

№ Issue description. Checking status

1 Compiler warnings. PASSED

2 Race conditions and Reentrancy. Cross-function race
conditions.

PASSED

3 Possible delays in data delivery. PASSED

4 Oracle calls. PASSED

5 Front running. PASSED

6 Timestamp dependence. PASSED

7 Integer Overflow and Underflow. PASSED

8 DoS with Revert. PASSED

9 DoS with block gas limit. PASSED

10 Methods execution permissions. PASSED

11 Economy model. If application logic is based on an
incorrect economic model, the application would not
function correctly and participants would incur financial
losses. This type of issue is most often found in bonus
rewards systems, Staking and Farming contracts, Vault and
Vesting contracts, etc.

PASSED

12 The impact of the exchange rate on the logic. PASSED

13 Private user data leaks. PASSED

14 Malicious Event log. PASSED

15 Scoping and Declarations. PASSED

16 Uninitialized storage pointers. PASSED

Copyright © CTDSec - All rights reserved 5 | Page

17 Arithmetic accuracy. PASSED

18 Design Logic. ACKNOWLEDGE

19 Cross-function race conditions. PASSED

20 Safe Zeppelin module. PASSED

21 Fallback function security. PASSED

22 Overpowered functions / Owner privileges PASSED

Copyright © CTDSec - All rights reserved 6 | Page

3.0 Security Issues

3.1 High severity issues

No high severity issues were found.

3.2 Medium severity issues [Acknowledge]

1. Token Uniqueness

Contract: TokenFactoryManager.sol

Issue: The assignTokensToOwner function uses the hasToken mapping to check if a token has already

been assigned to an owner. If a token is found in the mapping for a specific owner, the function reverts

with the TokenAlreadyExists error. However, this mechanism might not be foolproof in all scenarios. For

example, it does not account for cases where a token might be transferred and then re-assigned, or

other complex interactions that might not be immediately apparent but could lead to unintended

duplicate assignments.

Fix: Enhance the uniqueness check to account for various token lifecycle events, not just assignments.

This might include tracking token transfers, destruction, creation, and any other state-changing events.

3.3 Low severity issues [Acknowledge]

1. Input validation

Contract: TokenFactoryBase.sol

Issue: The constructor doesn't validate its input parameters, which could lead to setting an incorrect

factoryManager.

Fix: Add input validation checks in the constructor to ensure parameters meet addresses are not zero.

Copyright © CTDSec - All rights reserved 7 | Page

3.4 Informational Findings [Acknowledge]

1. Unnecessary use of Safemath

Contract: Antibot.sol

Issue: Solidity 0.8.0 includes built-in overflow protection. The use of SafeMath is redundant.

Fix: Remove the SafeMath library and its usage, as Solidity 0.8.0 handles overflow automatically.

Copyright © CTDSec - All rights reserved 8 | Page

4.0 Testing coverage - python

During the testing phase, custom use cases were written to cover all the logic of contracts in python

language. *Check “5 Annexes” to see the testing code.

Test_baby_token:

Copyright © CTDSec - All rights reserved 9 | Page

Copyright © CTDSec - All rights reserved 10 | Page

Copyright © CTDSec - All rights reserved 11 | Page

Test_burn_token:

Copyright © CTDSec - All rights reserved 12 | Page

Copyright © CTDSec - All rights reserved 13 | Page

Test_liquidity_buy_sell_fee_token:

Copyright © CTDSec - All rights reserved 14 | Page

Copyright © CTDSec - All rights reserved 15 | Page

Test_liquidity_fee_token:

Copyright © CTDSec - All rights reserved 16 | Page

Copyright © CTDSec - All rights reserved 17 | Page

Test_liquidity_token:

Copyright © CTDSec - All rights reserved 18 | Page

Copyright © CTDSec - All rights reserved 19 | Page

Test_standard_token:

Copyright © CTDSec - All rights reserved 20 | Page

5.0 Annexes

Testing code provided by our team.

Test_factory_token.py:

From brownie import (

reverts,

StandardToken,

BurnToken,

LiquidityToken,

LiquidityFeeToken,

LiquidityBuySellFeeToken,

BabyToken

)

from brownie.network.contract import Contract

from scripts.helpful_scripts import (

ZERO_ADDRESS,

get_account,

evm_increase_time,

get_timestamp

)

Copyright © CTDSec - All rights reserved 21 | Page

from scripts.deploy import (

deploy_WETH,

deploy_mock_token,

deploy_antibot,

deploy_standard_token_factory,

deploy_burn_token_factory,

deploy_liquidity_token_factory,

deploy_router,

deploy_liquidity_fee_token_factory,

deploy_liquidity_buy_sell_fee_token_factory,

deploy_baby_token_dividend,

deploy_baby_token_token_factory

)

def test_standard_token(only_local):

#arrange

owner = get_account(0)

other_account = get_account(1)

antibot = deploy_antibot(owner)

stardard_factory = deploy_standard_token_factory(owner)

tx = stardard_factory.create(

"Test", "TEST", 18, 100000000000,

antibot.address, True,

Copyright © CTDSec - All rights reserved 22 | Page

{"from": other_account, "amount": "1000 gwei"})

standard_token_addr = tx.events['TokenCreated'][0]['token']

new_standard_token = Contract.from_abi("StandardToken", standard_token_addr,

StandardToken.abi)

addr = "0x0d5dFEC1006A2B3782bD01dA484838160FDAFaC2"

new_standard_token.addToBlacklist([addr], {"from": other_account})

with reverts():

tx = new_standard_token.transfer(addr, 1000, {"from": other_account})

new_standard_token.removeFromBlacklist(addr, {"from": other_account})

tx = new_standard_token.transfer(addr, 1000, {"from": other_account})

def test_burn_token(only_local):

#arrange

owner = get_account(0)

other_account = get_account(1)

extra = get_account(2)

antibot = deploy_antibot(owner)

burn_factory = deploy_burn_token_factory(owner)

tx = burn_factory.create(

Copyright © CTDSec - All rights reserved 23 | Page

"Test", "TEST", 18, 100000000000, 1500,

antibot.address, True,

{"from": other_account, "amount": "1000 gwei"})

burn_token_addr = tx.events['TokenCreated'][0]['token']

new_burn_token = Contract.from_abi("BurnToken", burn_token_addr,

BurnToken.abi)

tx = new_burn_token.transfer(extra, 1000, {"from": other_account})

random_account = "0x0d5dFEC1006A2B3782bD01dA484838160FDAFaC2"

new_burn_token.addToBlacklist([random_account], {"from": other_account})

with reverts():

tx = new_burn_token.transfer(random_account, 500, {"from":

other_account})

tx = antibot.setAddressLimit(1, {"from": owner})

tx = burn_factory.create(

"Test", "TEST", 18, 100000000000, 1500,

antibot.address, True,

{"from": extra, "amount": "1000 gwei"})

burn_token_addr = tx.events['TokenCreated'][0]['token']

new_burn_token = Contract.from_abi("BurnToken", burn_token_addr,

BurnToken.abi)

new_burn_token.addToBlacklist([random_account], {"from": extra})

with reverts():

Copyright © CTDSec - All rights reserved 24 | Page

new_burn_token.addToBlacklist(["0xEaB66830A2c2C15793DF090d70c8E3E6609a8C5A"],

{"from": extra})

new_burn_token.removeFromBlacklist(random_account, {"from": extra})

new_burn_token.addToBlacklist(["0xEaB66830A2c2C15793DF090d70c8E3E6609a8C5A"],

{"from": extra})

with reverts("Burn fee is over 15%"):

new_burn_token.setBurnFeePercent(2000, {"from": extra})

new_burn_token.setBurnFeePercent(1000, {"from": extra})

def test_liquidity_token(only_local):

#arrange

owner = get_account(0)

other_account = get_account(1)

extra_account = get_account(2)

router = deploy_router(owner)

antibot = deploy_antibot(owner)

liquidity_factory = deploy_liquidity_token_factory(owner)

total_supply, tax_fee, liquidity_fee = 100000000000, 1000, 1000

tx = liquidity_factory.create(

"Test", "TEST", total_supply,

router.address, antibot.address,

tax_fee, liquidity_fee, True,

Copyright © CTDSec - All rights reserved 25 | Page

{"from": other_account, "amount": "1000 gwei"})

liquidity_token_addr = tx.events['TokenCreated'][0]['token']

new_liquidity_token = Contract.from_abi("LiquidityToken",

liquidity_token_addr, LiquidityToken.abi)

#assert

addr = "0x0d5dFEC1006A2B3782bD01dA484838160FDAFaC2"

new_liquidity_token.addToBlacklist([addr], {"from": other_account})

with reverts():

tx = new_liquidity_token.transfer(addr, 1000, {"from": other_account})

new_liquidity_token.removeFromBlacklist(addr, {"from": other_account})

tx = new_liquidity_token.transfer(addr, 1000, {"from": other_account})

tx = new_liquidity_token.transfer(extra_account, 1000, {"from": addr})

new_liquidity_token.excludeFromReward(extra_account, {"from": other_account})

with reverts("Account is already excluded"):

new_liquidity_token.excludeFromReward(extra_account, {"from":

other_account})

new_liquidity_token.includeInReward(extra_account, {"from": other_account})

with reverts("Account is already included"):

new_liquidity_token.includeInReward(extra_account, {"from":

other_account})

Copyright © CTDSec - All rights reserved 26 | Page

with reverts("Total fee is over 20%"):

new_liquidity_token.setTaxFeePercent(2000, {"from": other_account})

new_liquidity_token.setTaxFeePercent(500, {"from": other_account})

def test_liquidity_fee_token(only_local):

#arrange

owner = get_account(0)

other_account = get_account(1)

marketing_wallet = get_account(2)

another_account = get_account(3)

router = deploy_router(owner)

antibot = deploy_antibot(owner)

marketing_token = deploy_mock_token(owner)

liquidity_factory = deploy_liquidity_fee_token_factory(owner)

total_supply, tax_fee, liquidity_fee, marketing_fee = 100000000000, 1000,

500, 500

tx = liquidity_factory.create(

"Test", "TEST", total_supply,

[router.address, marketing_wallet, marketing_token.address,

antibot.address],

[tax_fee, liquidity_fee, marketing_fee], True,

{"from": other_account, "amount": "1000 gwei"})

Copyright © CTDSec - All rights reserved 27 | Page

liquidity_token_addr = tx.events['TokenCreated'][0]['token']

new_liquidity_token = Contract.from_abi("LiquidityFeeToken",

liquidity_token_addr, LiquidityFeeToken.abi)

addr = "0x0d5dFEC1006A2B3782bD01dA484838160FDAFaC2"

new_liquidity_token.addToBlacklist([addr], {"from": other_account})

with reverts():

tx = new_liquidity_token.transfer(addr, 1000, {"from": other_account})

new_liquidity_token.removeFromBlacklist(addr, {"from": other_account})

tx = new_liquidity_token.transfer(addr, 1000, {"from": other_account})

tx =

new_liquidity_token.transfer("0x51bD4197E97efC2341EC9E07768b8CCbdeafB0b6", 1000,

{"from": addr})

new_liquidity_token.excludeFromReward(another_account, {"from":

other_account})

with reverts("Account is already excluded"):

new_liquidity_token.excludeFromReward(another_account, {"from":

other_account})

new_liquidity_token.includeInReward(another_account, {"from": other_account})

with reverts("Account is already included"):

new_liquidity_token.includeInReward(another_account, {"from":

other_account})

Copyright © CTDSec - All rights reserved 28 | Page

with reverts("Total fee is over 20%"):

new_liquidity_token.setTaxFeePercent(2000, {"from": other_account})

new_liquidity_token.setTaxFeePercent(500, {"from": other_account})

def test_liquidity_buy_sell_fee_token(only_local):

#arrange

owner = get_account(0)

other_account = get_account(1)

marketing_wallet = get_account(2)

extra_account = get_account(3)

router = deploy_router(owner)

antibot = deploy_antibot(owner)

marketing_token = deploy_mock_token(owner)

liquidity_factory = deploy_liquidity_buy_sell_fee_token_factory(owner)

total_supply = 100000000000

fee_settings = [1000, 1000, 0]

buy_fee_settings = [200, 200, 0]

sell_fee_settings = [500, 500, 0]

tx = liquidity_factory.create(

"Test", "TEST", total_supply,

[router.address, marketing_wallet, marketing_token.address,

antibot.address],

Copyright © CTDSec - All rights reserved 29 | Page

fee_settings, buy_fee_settings, sell_fee_settings, True,

{"from": other_account, "amount": "1000 gwei"})

liquidity_token_addr = tx.events['TokenCreated'][0]['token']

new_liquidity_token = Contract.from_abi("LiquidityBuySellFeeToken",

liquidity_token_addr, LiquidityBuySellFeeToken.abi)

uniswap_pair = new_liquidity_token.uniswapV2Pair()

random_addr = "0xe3a78e5BF04FB02634bF66cCa4418402782FCdb5"

new_liquidity_token.addToBlacklist([random_addr], {"from": other_account})

with reverts():

tx = new_liquidity_token.transfer(random_addr, 1000, {"from":

other_account})

tx = new_liquidity_token.transfer(extra_account, 1000, {"from":

other_account}) # no fees owner

tx = new_liquidity_token.transfer(uniswap_pair, 1000, {"from":

other_account}) # no fees from owner

tx = new_liquidity_token.transfer(extra_account, 1000, {"from":

uniswap_pair}) # fees buy

tx = new_liquidity_token.transfer(uniswap_pair, 1000, {"from":

extra_account}) # fee sell

with reverts("fee is over 20%"):

new_liquidity_token.updateFees(1000, 1000, 1000, {"from": other_account})

new_liquidity_token.updateFees(500, 500, 500, {"from": other_account})

Copyright © CTDSec - All rights reserved 30 | Page

with reverts("buy fee is over 20%"):

new_liquidity_token.updateBuyFees(2000, 500, 500, {"from":

other_account})

new_liquidity_token.updateBuyFees(500, 500, 500, {"from": other_account})

with reverts("sell fee is over 20%"):

new_liquidity_token.updateSellFees(100, 100, 2000, {"from":

other_account})

new_liquidity_token.updateSellFees(200, 300, 400, {"from": other_account})

new_liquidity_token.excludeFromReward(extra_account, {"from": other_account})

with reverts("Account is already excluded"):

new_liquidity_token.excludeFromReward(extra_account, {"from":

other_account})

new_liquidity_token.includeInReward(extra_account, {"from": other_account})

with reverts("Account is already included"):

new_liquidity_token.includeInReward(extra_account, {"from":

other_account})

def test_baby_token(only_local):

#arrange

owner = get_account(0)

other_account = get_account(1)

Copyright © CTDSec - All rights reserved 31 | Page

marketing_wallet = get_account(2)

extra_account = get_account(3)

new_marketing_wallet = get_account(4)

router = deploy_router(owner)

reward = deploy_WETH(owner)

dividend = deploy_baby_token_dividend(owner)

antibot = deploy_antibot(owner)

baby_token_factory = deploy_baby_token_token_factory(owner)

total_supply = 100000000000

addrs = [reward.address, router.address, marketing_wallet, dividend.address,

antibot.address] #reward, router, marketing wallet, antibot

feeSettings = [5,5,10] # rewards, liquidity, marketing

tx = baby_token_factory.create(

"Test", "TEST", total_supply,

addrs, feeSettings, total_supply * 0.1, True,

{"from": other_account, "amount": "1000 gwei"})

baby_token_addr = tx.events['TokenCreated'][0]['token']

new_baby_token = Contract.from_abi("BabyToken", baby_token_addr,

BabyToken.abi)

Copyright © CTDSec - All rights reserved 32 | Page

new_baby_token.addToBlacklist([extra_account], {"from": other_account})

with reverts():

tx = new_baby_token.transfer(extra_account, 1000, {"from":

other_account})

addr = "0x0d5dFEC1006A2B3782bD01dA484838160FDAFaC2"

blacklisted = [

"0x9EFc4f8607EA8F6332D862A04AB5Cee16E879CE8",

"0x2AD89FFb5a838857F048ba3fded360eD92F22f24",

"0x3330243FBE86b19cC4215E3a656c8a60eC3BFbE9",

"0x61Ce75aCdBc42C7431a06398Edaf577fAA1Bd9c0",

"0x57795cb5466Ac57B1cfd895BebE8Bed68Bc6E79c",

"0x789c6bb1431BF2Aace5fd799FdE154A98525A5b6",

"0xafAe9205Da4586a6254a9bCDf3375a138A2ee542",

"0x1ae76254976F38d5C8D652349FA5F318593D7521",

"0x12a1142248DbaDFBe8F9bE370Bd2cEA3868cfa4A",

]

new_baby_token.addToBlacklist(blacklisted, {"from": other_account})

new_baby_token.removeFromBlacklist(extra_account, {"from": other_account})

tx = new_baby_token.transfer(addr, 1000, {"from": other_account})

test antibot

antibot.setTimeLimit(259200, {"from": owner}) # set 3 days

Copyright © CTDSec - All rights reserved 33 | Page

with reverts("time limit must be less or equal 10 days"):

antibot.setTimeLimit(259200 * 4, {"from": owner}) # set 12 days

with reverts("time limit must be greater or equal 1 day"):

antibot.setTimeLimit(100, {"from": owner}) # set 100 seconds

with reverts("Only the token owner allowed"):

antibot.updateTokenOwner(baby_token_addr, extra_account, {"from":

extra_account})

antibot.updateTokenOwner(baby_token_addr, extra_account, {"from":

other_account})

tx = baby_token_factory.create(

"Test2", "TEST2", total_supply,

addrs, feeSettings, total_supply * 0.1, True,

{"from": extra_account, "amount": "1000 gwei"})

baby_token_addr = tx.events['TokenCreated'][0]['token']

new_baby_token = Contract.from_abi("BabyToken", baby_token_addr,

BabyToken.abi)

new_baby_token.addToBlacklist([addr], {"from": extra_account})

three_days = get_timestamp(3)

evm_increase_time(three_days)

tx = new_baby_token.transfer(other_account, 1000, {"from": extra_account})

with reverts():

new_baby_token.removeFromBlacklist(addr, {"from": extra_account})

Copyright © CTDSec - All rights reserved 34 | Page

with reverts("BabyToken: The marketing wallet cannot be the value of zero"):

new_baby_token.setMarketingWallet(ZERO_ADDRESS, {"from": extra_account})

with reverts("Marketing wallet cannot be a contract"):

new_baby_token.setMarketingWallet(reward.address, {"from":

extra_account})

new_baby_token.setMarketingWallet(new_marketing_wallet, {"from":

extra_account})

with reverts("BabyToken: gasForProcessing must be between 200,000 and

500,000"):

new_baby_token.updateGasForProcessing(100, {"from": extra_account})

with reverts("BabyToken: Cannot update gasForProcessing to same value"):

new_baby_token.updateGasForProcessing(300000, {"from": extra_account})

new_baby_token.updateGasForProcessing(200000, {"from": extra_account})

with reverts():

new_baby_token.setSwapTokensAtAmount(1, {"from": extra_account})

new_baby_token.setSwapTokensAtAmount(total_supply * 0.2, {"from":

extra_account})

with reverts("Total fee is over 20%"):

new_baby_token.setTokenRewardsFee(20, {"from": extra_account})

new_baby_token.setTokenRewardsFee(5, {"from": extra_account})

Copyright © CTDSec - All rights reserved 35 | Page

new_baby_token.excludeFromFees(new_marketing_wallet, {"from": extra_account})

with reverts("BabyToken: Account is already excluded"):

new_baby_token.excludeFromFees(new_marketing_wallet, {"from":

extra_account})

Copyright © CTDSec - All rights reserved 36 | Page

6.0 Summary of the audit

The contracts follow good code practices, despite this medium vulnerabilities are identified which must

be checked prior to deployment. Regarding low and informational vulnerabilities, they should not imply

a risk for operations, but we continue to recommend their review and evaluation to propose

improvements. From our side we will help with any questions or resolution for all the vulnerabilities

presented in the report.

Update: The development team has reviewed all the vulnerabilities and confirms that the medium

vulnerability will not affect the usability of the factory contract in the current scenarios, it will not

generate errors since the risk exposure will be reduced.

Copyright © CTDSec - All rights reserved 37 | Page

Vulnerability Level Total Pending Not
Apply

Acknowledged Resolved

High
0

Medium
1 1

Low
1 1

Informational
1 1

